当前位置:魔方格数学曲线的方程>已知椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点分别为F1(-1,0),F2(1,..
题文
已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的两个焦点分别为F1(-1,0),F2(1,0),且椭圆C经过点P(
4
3
1
3
)

(I)求椭圆C的离心率:
(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且
2
|AQ|2
=
1
|AM|2
+
1
|AN|2
,求点Q的轨迹方程.
题型:解答题难度:中档来源:四川
答案
(I)∵椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的两个焦点分别为F1(-1,0),F2(1,0),且椭圆C经过点P(
4
3
1
3
)

∴c=1,2a=PF1+PF2=
(
4
3
+1)
2
+
1
9
+
(
4
3
-1)
2
+
1
9
=2
2
,即a=
2

∴椭圆的离心率e=
c
a
=
1
2
=
2
2
…4分
(II)由(I)知,椭圆C的方程为
x2
2
+y2=1
,设点Q的坐标为(x,y)
(1)当直线l与x轴垂直时,直线l与椭圆C交于(0,1)、(0,-1)两点,此时点Q的坐标为(0,2-
3
5
5

(2)当直线l与x轴不垂直时,可设其方程为y=kx+2,
因为M,N在直线l上,可设点M,N的坐标分别为(x1,kx1+2),(x2,kx2+2),则
|AM|2=(1+k2)x1 2|AN|2=(1+k2)x2 2,又|AQ|2=(1+k2)x2
2
|AQ|2
=
1
|AM|2
+
1
|AN|2

2
(1+k2)x2
=
1
(1+k2)x1 2
+
1
(1+k2)x2 2
,即
2
x2
=
1
x1 2
+
1
x2 2
=
(x1+x2)2-2x1x2
x1 2x2 2
…①
将y=kx+2代入
x2
2
+y2=1
中,得(2k2+1)x2+8kx+6=0…②
由△=(8k)2-24(2k2+1)>0,得k2
3
2

由②知x1+x2=-
8k
2k2+1
,x1x2=
6
2k2+1
,代入①中化简得x2=
18
10k2-3
…③
因为点Q在直线y=kx+2上,所以k=
y-2
x
,代入③中并化简得10(y-2)2-3x2=18
由③及k2
3
2
可知0<x2
3
2
,即x∈(-
6
2
,0)∪(0,
6
2

由题意,Q(x,y)在椭圆C内,所以-1≤y≤1,
又由10(y-2)2-3x2=18得(y-2)2∈[
9
5
9
4
)且-1≤y≤1,则y∈(
1
2
,2-
3
5
5

所以,点Q的轨迹方程为10(y-2)2-3x2=18,其中x∈(-
6
2
6
2
),y∈(
1
2
,2-
3
5
5
)…13分
据魔方格专家权威分析,试题“已知椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点分别为F1(-1,0),F2(1,..”主要考查你对  曲线的方程动点的轨迹方程椭圆的性质(顶点、范围、对称性、离心率)  等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问魔方格学习社区
曲线的方程动点的轨迹方程椭圆的性质(顶点、范围、对称性、离心率)
考点名称:曲线的方程
  • 曲线的方程的定义:

    在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:
    (1)曲线上点的坐标都是这个方程的解;
    (2)以这个方程的解为坐标的点都是曲线上的点。
    那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线。

    求曲线的方程的步骤:

    (1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标;
    (2)写出适合条件的p(M)的集合,P={M|p(M)};
    (3)用坐标表示条件p(M),列出方程f(x,y)=0;
    (4)化方程f(x,y)=0为最简形式;
    (5)说明化简后的方程的解为坐标的点都在曲线上。

  • 求曲线的方程的步骤:

    (1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标;
    (2)写出适合条件的p(M)的集合,P={M|p(M)};
    (3)用坐标表示条件p(M),列出方程f(x,y)=0;
    (4)化方程f(x,y)=0为最简形式;
    (5)说明化简后的方程的解为坐标的点都在曲线上。

    求曲线方程的常用方法:

    (1)待定系数法这种方法需要预先知道曲线的方程,先设出来,然后根据条件列出方程(组)求解未知数。
    (2)直译法就是把动点所满足的题设条件直接给表示出来,从而得到其横、纵坐标之间的关系式。(3)定义法就是由曲线的定义直接得到曲线方程。
    (4)交轨法:就是在求两动曲线交点轨迹方程时,联立方程组消去参数,得到交点的轨迹方程。在求交点问题时常用此法。
    (5)参数法就是通过中间变量找到y、x的间接关系,然后通过消参得出其直接关系。
    (6)相关点法就是通过所求动点与已知动点的关系,来求曲线方程的方法。

以上内容为魔方格学习社区(www.mofangge.com)原创内容,未经允许不得转载!