当前位置:魔方格数学圆内接四边..>求证:若圆内接五边形的每个角都相等,则它为正五边形.-数学-魔方..
题文
求证:若圆内接五边形的每个角都相等,则它为正五边形.
题型:解答题难度:中档来源:不详
答案
证明:设圆内接五边形为ABCDE,圆心是 O.
连接OA,OB,OC OD,OE,可得五个三角形
∵OA=OB=OC=OD=OE=半径,∴有五个等腰三角形
在△OAB、△OBC、△OCD、△ODE、△OEA中
魔方格

则∠OAB=∠OBA,∠OBC=∠OCB,∠OCD=∠ODC,∠ODE=∠OED,∠OEA=∠OAE
因为所有内角相等,
所以∠OAE+∠OAB=∠OBA+∠OBC,所以∠OAE=∠OBC
同理证明∠OBA=∠OCD,∠OCB=∠OED,∠ODC=∠OEA,∠OED=∠OAB
则△OAB、△OBC、△OCD、△ODE、△OEA 中,∠AOB=∠BOC=∠COD=∠DOE=∠EOA
∴△OAB≌△OBC≌△OCD≌△ODE≌△OEA  (SAS边角边定律)
∴AB=BC=CD=DE=EA
∴五边形ABCDE为正五边形
据魔方格专家权威分析,试题“求证:若圆内接五边形的每个角都相等,则它为正五边形.-数学-魔方..”主要考查你对  圆内接四边形的性质与判定定理  等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问魔方格学习社区
圆内接四边形的性质与判定定理
考点名称:圆内接四边形的性质与判定定理
  • 圆内接四边形的概念:

    如果一个多边形的所有顶点都在一个圆上,这个多边形就叫做圆内接多边形,这个圆就是多边形的外接圆。

  • 圆内接四边形的性质:

    圆内接四边形对角互补;圆内接四边形的外角等于它的内角的对角。

    圆内接四边形的判定:

    如果一个四边形的对角互补,那么这个四边形的四个顶点共圆。

    推论:

    如果一个四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆。

  • 方法总结:

    1、在解决与圆内接四边形有关的问题时,要注意观察图形,分清四边形的外角和内对角的位置,正确应用性质.
    2、当两圆相交时,常常通过连结两圆的公共弦,构建出圆内接四边形,进一步解决问题.

以上内容为魔方格学习社区(www.mofangge.com)原创内容,未经允许不得转载!